\(\int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx\) [127]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 234 \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {22 c^3 (g \cos (e+f x))^{5/2}}{15 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^3 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^2 (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{35 f g \sqrt {a+a \sin (e+f x)}}+\frac {2 c (g \cos (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{7 f g \sqrt {a+a \sin (e+f x)}} \]

[Out]

2/7*c*(g*cos(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(3/2)/f/g/(a+a*sin(f*x+e))^(1/2)+22/15*c^3*(g*cos(f*x+e))^(5/2)/f/
g/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+22/5*c^3*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*Ell
ipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x
+e))^(1/2)+22/35*c^2*(g*cos(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(1/2)/f/g/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2930, 2921, 2721, 2719} \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {22 c^3 (g \cos (e+f x))^{5/2}}{15 f g \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^3 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{5 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^2 \sqrt {c-c \sin (e+f x)} (g \cos (e+f x))^{5/2}}{35 f g \sqrt {a \sin (e+f x)+a}}+\frac {2 c (c-c \sin (e+f x))^{3/2} (g \cos (e+f x))^{5/2}}{7 f g \sqrt {a \sin (e+f x)+a}} \]

[In]

Int[((g*Cos[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(5/2))/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(22*c^3*(g*Cos[e + f*x])^(5/2))/(15*f*g*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (22*c^3*g*Sqrt[Co
s[e + f*x]]*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(5*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f
*x]]) + (22*c^2*(g*Cos[e + f*x])^(5/2)*Sqrt[c - c*Sin[e + f*x]])/(35*f*g*Sqrt[a + a*Sin[e + f*x]]) + (2*c*(g*C
os[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(3/2))/(7*f*g*Sqrt[a + a*Sin[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2930

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
 + f*x])^n/(f*g*(m + n + p))), x] + Dist[a*((2*m + p - 1)/(m + n + p)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e +
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + n + p, 0] &&  !LtQ[0, n, m] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {2 c (g \cos (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{7 f g \sqrt {a+a \sin (e+f x)}}+\frac {1}{7} (11 c) \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx \\ & = \frac {22 c^2 (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{35 f g \sqrt {a+a \sin (e+f x)}}+\frac {2 c (g \cos (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{7 f g \sqrt {a+a \sin (e+f x)}}+\frac {1}{5} \left (11 c^2\right ) \int \frac {(g \cos (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx \\ & = \frac {22 c^3 (g \cos (e+f x))^{5/2}}{15 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^2 (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{35 f g \sqrt {a+a \sin (e+f x)}}+\frac {2 c (g \cos (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{7 f g \sqrt {a+a \sin (e+f x)}}+\frac {1}{5} \left (11 c^3\right ) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx \\ & = \frac {22 c^3 (g \cos (e+f x))^{5/2}}{15 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^2 (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{35 f g \sqrt {a+a \sin (e+f x)}}+\frac {2 c (g \cos (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{7 f g \sqrt {a+a \sin (e+f x)}}+\frac {\left (11 c^3 g \cos (e+f x)\right ) \int \sqrt {g \cos (e+f x)} \, dx}{5 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {22 c^3 (g \cos (e+f x))^{5/2}}{15 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^2 (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{35 f g \sqrt {a+a \sin (e+f x)}}+\frac {2 c (g \cos (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{7 f g \sqrt {a+a \sin (e+f x)}}+\frac {\left (11 c^3 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{5 \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {22 c^3 (g \cos (e+f x))^{5/2}}{15 f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^3 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 c^2 (g \cos (e+f x))^{5/2} \sqrt {c-c \sin (e+f x)}}{35 f g \sqrt {a+a \sin (e+f x)}}+\frac {2 c (g \cos (e+f x))^{5/2} (c-c \sin (e+f x))^{3/2}}{7 f g \sqrt {a+a \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 8.87 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.74 \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {c^2 (g \cos (e+f x))^{3/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x))^2 \sqrt {c-c \sin (e+f x)} \left (924 E\left (\left .\frac {1}{2} (e+f x)\right |2\right )+\sqrt {\cos (e+f x)} (515 \cos (e+f x)-3 (5 \cos (3 (e+f x))+42 \sin (2 (e+f x))))\right )}{210 f \cos ^{\frac {3}{2}}(e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 \sqrt {a (1+\sin (e+f x))}} \]

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(5/2))/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(c^2*(g*Cos[e + f*x])^(3/2)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^2*Sqrt[c - c*Sin[e + f*x
]]*(924*EllipticE[(e + f*x)/2, 2] + Sqrt[Cos[e + f*x]]*(515*Cos[e + f*x] - 3*(5*Cos[3*(e + f*x)] + 42*Sin[2*(e
 + f*x)]))))/(210*f*Cos[e + f*x]^(3/2)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^5*Sqrt[a*(1 + Sin[e + f*x])])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.42 (sec) , antiderivative size = 510, normalized size of antiderivative = 2.18

method result size
default \(\frac {2 \left (-231 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \left (\cos ^{2}\left (f x +e \right )\right )+231 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \left (\cos ^{2}\left (f x +e \right )\right )+15 \left (\cos ^{5}\left (f x +e \right )\right )-462 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \cos \left (f x +e \right )+462 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \cos \left (f x +e \right )+15 \left (\cos ^{4}\left (f x +e \right )\right )+63 \left (\cos ^{3}\left (f x +e \right )\right ) \sin \left (f x +e \right )-231 i \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right )+231 i \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right )-140 \left (\cos ^{3}\left (f x +e \right )\right )+63 \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-140 \left (\cos ^{2}\left (f x +e \right )\right )-231 \cos \left (f x +e \right ) \sin \left (f x +e \right )\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {g \cos \left (f x +e \right )}\, g \,c^{2}}{105 f \left (\sin \left (f x +e \right )-1\right ) \left (1+\cos \left (f x +e \right )\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}\) \(510\)

[In]

int((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/105/f*(-231*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e))
,I)*cos(f*x+e)^2+231*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(
f*x+e)),I)*cos(f*x+e)^2+15*cos(f*x+e)^5-462*I*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*
(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)+462*I*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(
1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)+15*cos(f*x+e)^4+63*cos(f*x+e)^3*sin(f*x+e)-231*I*(1/(1+cos(f
*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)+231*I*(1/(1+cos(f*x+e))
)^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)-140*cos(f*x+e)^3+63*cos(f*x+e
)^2*sin(f*x+e)-140*cos(f*x+e)^2-231*cos(f*x+e)*sin(f*x+e))*(-c*(sin(f*x+e)-1))^(1/2)*(g*cos(f*x+e))^(1/2)*g*c^
2/(sin(f*x+e)-1)/(1+cos(f*x+e))/(a*(1+sin(f*x+e)))^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.65 \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {-231 i \, \sqrt {2} \sqrt {a c g} c^{2} g {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 231 i \, \sqrt {2} \sqrt {a c g} c^{2} g {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) - 2 \, {\left (15 \, c^{2} g \cos \left (f x + e\right )^{2} + 63 \, c^{2} g \sin \left (f x + e\right ) - 140 \, c^{2} g\right )} \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{105 \, a f} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/105*(-231*I*sqrt(2)*sqrt(a*c*g)*c^2*g*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) + I*sin
(f*x + e))) + 231*I*sqrt(2)*sqrt(a*c*g)*c^2*g*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) -
 I*sin(f*x + e))) - 2*(15*c^2*g*cos(f*x + e)^2 + 63*c^2*g*sin(f*x + e) - 140*c^2*g)*sqrt(g*cos(f*x + e))*sqrt(
a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c))/(a*f)

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(5/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*(-c*sin(f*x + e) + c)^(5/2)/sqrt(a*sin(f*x + e) + a), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \]

[In]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(5/2))/(a + a*sin(e + f*x))^(1/2),x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(5/2))/(a + a*sin(e + f*x))^(1/2), x)